Effects of stanozolol on normal and IL-1β-stimulated equine chondrocytes in vitro
نویسندگان
چکیده
BACKGROUND Intra-articular administration of stanozolol has shown promising results by improving the clinical management of lameness associated with naturally-occurring osteoarthritis (OA) in horses, and by decreasing osteophyte formation and subchondral bone reaction in sheep following surgically induced OA. However, there is limited evidence on the anti-inflammatory and modulatory properties of stanozolol on articular tissues. The objective of the current study was to evaluate the effects of stanozolol on chondrocyte viability and gene expression in normal equine chondrocytes and an inflammatory in vitro system of OA (interleukin-1β (IL-1β) treated chondrocytes). RESULTS Chondrocytes from normal metacarpophalangeal joints of skeletally mature horses were exposed to four treatment groups: (1) media only (2) media+IL-1β (3) media+IL-1β + stanozolol (4) media+stanozolol. Following exposure, chondrocyte viability and the expression of catabolic, anabolic and structural genes were determined. General linear models with Dunnet's comparisons with Bonferroni's adjustment were performed. Cell viability was similar in all groups. Stanozolol treatment reduced gene expression of MMP-13, MMP-1, IL-6 and COX-2 in both normal and IL-1β treated chondrocytes. Stanozolol treatment reduced ADAMTS4 gene expression in normal chondrocytes. Stanozolol reduced the expression of COL2A1. CONCLUSIONS The current study demonstrates stanozolol has chondroprotective effects through downregulation of genes for pro-inflammatory/catabolic cytokines and enzymes associated with OA. However, there is no evidence of increased cartilage stimulation through upregulation of the anabolic and structural genes tested.
منابع مشابه
In vitro and in vivo assessment of inhibitory effect of stevioside on pro-inflammatory cytokines
Objective: Stevioside is a natural non-caloric sweetener which has been reported to have anti-inflammatory activity. The aim of the present study was to examine in vitro and in vivo effects of stevioside on rats plasma levels of tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), TNF-α and IL-1β release from lipopolysaccharide(LPS)-stimulated rat peripheral blood mononuclear cells (P...
متن کاملLocal anaesthetics or their combination with morphine and/or magnesium sulphate are toxic for equine chondrocytes and synoviocytes in vitro
BACKGROUND Chondrotoxic effects of local anaesthetics are well reported in humans and some animal species but knowledge on their toxic effects on synoviocytes or equine chondrocytes or the effects on cellular production of inflammatory cytokines is limited. The purpose of this study was to evaluate the in vitro effects of local anaesthetics, morphine, magnesium sulphate (MgSO4) or their combina...
متن کاملProtective Effects of Interleukin-4 on Tissue Destruction and Morphological Changes of Bovine Nasal Chondrocytes in vitro
Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was...
متن کاملExosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes
INTRODUCTION Osteoarthritis (OA) is a whole joint disease, and characterized by progressive degradation of articular cartilage, synovial hyperplasia, bone remodeling and angiogenesis in various joint tissues. Exosomes are a type of microvesicles (MVs) that may play a role in tissue-tissue and cell-cell communication in homeostasis and diseases. We hypothesized that exosomes function in a novel ...
متن کاملGypenoside inhibits interleukin-1β-induced inflammatory response in human osteoarthritis chondrocytes.
Gypenoside (GP), the main active ingredient of Gynostemma pentaphyllum, possesses a variety of pharmacological capacities including anti-inflammation, anti-oxidation, and anti-tumor. However, the effects of GP on IL-1β-stimulated human osteoarthritis (OA) chondrocytes are still unknown. Therefore, this study aimed to investigate the anti-inflammatory effects of GP on IL-1β-stimulated human OA c...
متن کامل